
Level up your labels
 #1 Make it easy for
your readers

#2 Keep the main thing
the main thing

#3 Use alignments to
direct the reader’s gaze

#4 Add arrows sparingly

#5 Give everything space
to breathe

Full plot code: cararthompson.com/talks/useR2022

Cara Thompson, PhD | @cararthompson

Polished annotations can make all the difference between a good plot that contains all the
necessary information, and a great plot that engages readers with a clear story. Whether
we’re using annotations to highlight different groups, to tell stories about an outlier data
point, to add detail about key values or to explain how a predictive model works, applying a
few simple tricks allows them to shine as integral parts of our data visualisations.

Here, I’m using the penguins dataset from {palmerpenguins} and have created

two extra tibbles: p_summary (containing summary info by species) and p_exceptions
(containing data, nicknames, and descriptions for the penguins I want to highlight).

Applying these five tips and the coding tricks to implement them gets us from this

to this

Tips and tricks for annotating plots Use to help readers orient themselves as they read the
explanatory text, using {ggtext} and a bit of CSS formatting. Set
up your palette, then add the colours into the text using {glue}:

colour

Work out which data points you want to highlight, and where the boxes will
sit relative to them. Then , depending
on whether the box will be to the left, right, top or bottom of the data point.

apply text alignments programmatically

Make the most of theme options such as lineheight and margin,
, and expand your scales as required.

remove unnecessary legends

Use for explanatory text, such as the
subtitle and the “mean body mass” label in the three big boxes.
Make use of more CSS formatting to alter font size on the fly,
and of the alpha property of {ggtext}’s geom_textbox() to
place a box over data while keeping the main story visible.

a secondary text colour

annotate() can take vectors of x/end and y/end coordinates,
but not of curvatures. Build the data programmatically within a
tibble, and in that tibble to
add arrows with a single annotate() call.

loop through the unique curvatures

